# Matz tells that you can use Integer() for strict checked conversion. Integer("abc") #=> `Integer': invalid value for Integer: "abc" (ArgumentError) Integer("567") #=> 567 # You may use Float() for floating point stuff Integer("56.7") #=> `Integer': invalid value for Integer: "56.7" (ArgumentError) Float("56.7") #=> 56.7 # You may also use a regexp for that if string =~ /^[+-]?\d+$/ p 'is an integer' else p 'is not' end if string =~ /^-?(?:\d+(?:\.\d*)?|\.\d+)$/ p 'is a decimal number' else p 'is not' end |
# equal(num1, num2, accuracy) : returns true if num1 and num2 are # equal to accuracy number of decimal places def equal(i, j, a) sprintf("%.#{a}g", i) == sprintf("%.#{a}g", j) end wage = 536 # $5.36/hour week = 40 * wage # $214.40 printf("One week's wage is: \$%.2f\n", week/100.0) |
num.round # rounds to integer a = 0.255 b = sprintf("%.2f", a) print "Unrounded: #{a}\nRounded: #{b}\n" printf "Unrounded: #{a}\nRounded: %.2f\n", a print "number\tint\tfloor\tceil\n" a = [ 3.3 , 3.5 , 3.7, -3.3 ] for n in a printf("% .1f\t% .1f\t% .1f\t% .1f\n", # at least I don't fake my output :) n, n.to_i, n.floor, n.ceil) end |
def dec2bin(n) [n].pack("N").unpack("B32")[0].sub(/^0+(?=\d)/, '') end def bin2dec(n) [("0"*32+n.to_s)[-32..-1]].pack("B32").unpack("N")[0] end |
for i in x .. y # i is set to every integer from x to y, inclusive end x.step(y,7) { |i| # i is set to every integer from x to y, stepsize = 7 } print "Infancy is: " (0..2).each { |i| print i, " " } print "\n" |
# We can add conversion methods to the Integer class, # this makes a roman number just a representation for normal numbers. class Integer @@romanlist = [["M", 1000], ["CM", 900], ["D", 500], ["CD", 400], ["C", 100], ["XC", 90], ["L", 50], ["XL", 40], ["X", 10], ["IX", 9], ["V", 5], ["IV", 4], ["I", 1]] def to_roman remains = self roman = "" for sym, num in @@romanlist while remains >= num remains -= num roman << sym end end roman end def Integer.from_roman(roman) ustr = roman.upcase sum = 0 for entry in @@romanlist sym, num = entry[0], entry[1] while sym == ustr[0, sym.length] sum += num ustr.slice!(0, sym.length) end end sum end end roman_fifteen = 15.to_roman puts "Roman for fifteen is #{roman_fifteen}" i = Integer.from_roman(roman_fifteen) puts "Converted back, #{roman_fifteen} is #{i}" # check for i in (1..3900) r = i.to_roman j = Integer.from_roman(r) if i != j puts "error: #{i} : #{r} - #{j}" end end |
random = rand(y-x+1)+x chars = ["A".."Z","a".."z","0".."9"].collect { |r| r.to_a }.join + %q(!@$%^&*) password = (1..8).collect { chars[rand(chars.size)] }.pack("C*") |
srand # uses a combination of the time, the process id, and a sequence number srand(val) # for repeatable behaviour |
# from the randomr lib: # http://raa.ruby-lang.org/project/randomr/ ----> http://raa.ruby-lang.org/project/randomr/ require 'random/mersenne_twister' mers = Random::MersenneTwister.new 123456789 puts mers.rand(0) # 0.550321932544541 puts mers.rand(10) # 2 # using online sources of random data via the realrand package: # http://raa.ruby-lang.org/project/realrand/ # **Note** # The following online services are used in this package: # http://www.random.org - source: atmospheric noise # http://www.fourmilab.ch/hotbits - source: radioactive decay timings # http://random.hd.org - source: entropy from local and network noise # Please visit the sites and respect the rules of each service. require 'random/online' generator1 = Random::RandomOrg.new puts generator1.randbyte(5).join(",") puts generator1.randnum(10, 1, 6).join(",") # Roll dice 10 times. generator2 = Random::FourmiLab.new puts generator2.randbyte(5).join(",") # randnum is not supported. generator3 = Random::EntropyPool.new puts generator3.randbyte(5).join(",") # randnum is not supported. |
def gaussian_rand begin u1 = 2 * rand() - 1 u2 = 2 * rand() - 1 w = u1*u1 + u2*u2 end while (w >= 1) w = Math.sqrt((-2*Math.log(w))/w) [ u2*w, u1*w ] end mean = 25 sdev = 2 salary = gaussian_rand[0] * sdev + mean printf("You have been hired at \$%.2f\n", salary) |
def deg2rad(d) (d/180.0)*Math::PI end def rad2deg(r) (r/Math::PI)*180 end |
sin_val = Math.sin(angle) cos_val = Math.cos(angle) tan_val = Math.tan(angle) # AFAIK Ruby's Math module doesn't provide acos/asin # While we're at it, let's also define missing hyperbolic functions module Math def Math.asin(x) atan2(x, sqrt(1 - x**2)) end def Math.acos(x) atan2(sqrt(1 - x**2), x) end def Math.atan(x) atan2(x, 1) end def Math.sinh(x) (exp(x) - exp(-x)) / 2 end def Math.cosh(x) (exp(x) + exp(-x)) / 2 end def Math.tanh(x) sinh(x) / cosh(x) end end # The support for Complex numbers is not built-in y = Math.acos(3.7) #=> in `sqrt': square root for negative number (ArgumentError) # There is an implementation of Complex numbers in 'complex.rb' in current # Ruby distro, but it doesn't support atan2 with complex args, so it doesn't # solve this problem. |
log_e = Math.log(val) log_10 = Math.log10(val) def log_base(base, val) Math.log(val)/Math.log(base) end answer = log_base(10, 10_000) puts "log10(10,000) = #{answer}" |
require 'matrix.rb' a = Matrix[[3, 2, 3], [5, 9, 8]] b = Matrix[[4, 7], [9, 3], [8, 1]] c = a * b a.row_size a.column_size c.det a.transpose |
require 'complex.rb' require 'rational.rb' a = Complex(3, 5) # 3 + 5i b = Complex(2, -2) # 2 - 2i puts "c = #{a*b}" c = a * b d = 3 + 4*Complex::I printf "sqrt(#{d}) = %s\n", Math.sqrt(d) |
number = hexadecimal.hex number = octal.oct print "Gimme a number in decimal, octal, or hex: " num = gets.chomp exit unless defined?(num) num = num.oct if num =~ /^0/ # does both oct and hex printf "%d %x %o\n", num, num, num print "Enter file permission in octal: " permissions = gets.chomp raise "Exiting ...\n" unless defined?(permissions) puts "The decimal value is #{permissions.oct}" |
def commify(n) n.to_s =~ /([^\.]*)(\..*)?/ int, dec = $1.reverse, $2 ? $2 : "" while int.gsub!(/(,|\.|^)(\d{3})(\d)/, '\1\2,\3') end int.reverse + dec end |
printf "It took %d hour%s\n", time, time == 1 ? "" : "s" # dunno if an equivalent to Lingua::EN::Inflect exists... |
#----------------------------- #!/usr/bin/ruby # bigfact - calculating prime factors def factorize(orig) factors = {} factors.default = 0 # return 0 instead nil if key not found in hash n = orig i = 2 sqi = 4 # square of i while sqi <= n do while n.modulo(i) == 0 do n /= i factors[i] += 1 # puts "Found factor #{i}" end # we take advantage of the fact that (i +1)**2 = i**2 + 2*i +1 sqi += 2 * i + 1 i += 1 end if (n != 1) && (n != orig) factors[n] += 1 end factors end def printfactorhash(orig, factorcount) print format("%-10d ", orig) if factorcount.length == 0 print "PRIME" else # sorts after number, because the hash keys are numbers factorcount.sort.each { |factor,exponent| print factor if exponent > 1 print "**", exponent end print " " } end puts end for arg in ARGV n = arg.to_i mfactors = factorize(n) printfactorhash(n, mfactors) end #----------------------------- |