// NOTE: In order to keep the size / verbosity of code examples to a minimum, library function // calls will generally not include error checking and handling. Example: // // p = malloc(...); if ((p = malloc(...)) == NULL) // { // ... handle error ... // } // // However, any necessary, application-specific error-related code, will still be used. Code // examples will endeavour, wherever possible, to make use of: // // * C99 Features e.g. variable-length arrays, non-const aggregate initialisers // * GNU Extensions e.g. nested functions, statement expressions // // The aim of doing so is to reduce redundancy [i.e. copious examples of older / standard C // already exist] as well as enhance the information value of each PLEAC example. // // Another item worthy of note is the use of writeable 'static local storage' in many custom // functions. Whilst a commonly-used technique that makes functions self-contained, and easier // to use [which is precisely why it is used here], it is not viable in multi-threaded code; // examples need to be suitably modified to work in such code. The section, 'Printing a Date', // in Chapter 3: Dates and Times, discusses this issue, and provides illustrative examples. #include <stdio.h> // Declaring the variable as 'static' ensures it has 'file scope', that is: // * It may be considered globally accessable within the current source file // * Is not visible to code defined outside the current file static int greeted = 0; int howManyGreetings(void); void hello(void); // ------------ int main(void) { hello(); int greetings = howManyGreetings(); printf("bye there!, there have been %d greetings so far\n", greetings); } // ------------ int howManyGreetings(void) { return greeted; } void hello(void) { printf("high there!, this function has been called %d times\n", ++greeted); } |
// Standard C requires that a function be prototyped, hence the name and type of parameters // must be specified, and the argumemt list in any calls to that function must match the // parameter list, as illustrated here. #include <math.h> double hypotenuse(double side1, double side2); // ---- int main(void) { double diag = hypotenuse(3.0, 4.0); } // ---- double hypotenuse(double side1, double side2) { return sqrt(pow(side1, 2.0) + pow(side2, 2.0)); } // ---------------------------- // Standard C does not support the dynamic packaging / unpackaging of arguments, thus it is // *not* possible to call a function which has, for example, been declared to expect two // parameters, with a single argument, to to pass it its arguments packed as elements in // a single array and expect those elements to be 'unpacked' from the array. If the function // is to be passed an array when called, then it must be declared to expect an array. Put // simply, the function call must conform to the function declaration and definition #include <math.h> double hypotenuse(double sidearr[]); // ---- int main(void) { double sidearr[] = {3.0, 4.0}; double diag = hypotenuse(sidearr); } // ---- double hypotenuse(double sidearr[]) { return sqrt(pow(sidearr[0], 2.0) + pow(sidearr[1], 2.0)); } // ---------------------------- // Scope does exist to implement functions that may be passed a variable number of parameters. // However, such functions have to be especially written to determine the number and type of // arguments passed, a task that is generally quite precarious because there is little system // support for it, and it is strongly reliant on the programmer adhering to certain conventions. // For instance, it is not possible to determine the type of the arguments passed. Instead, this // must be determined by 'hints' [e.g. 'printf' uses the format specifiers in the format // string to determine argument type], or by strictly adhering to other conventions [e.g. // assuming a specific number of arguments, or using a value to indicate the 'last' argument #include <math.h> #include <stdarg.h> // Note: at least one parameter must be specified, the rest may then be unspecified i.e. a // variable number double hypotenuse(double side1, ...); // ---- int main(void) { double diag = hypotenuse(3.0, 4.0); } // ---- // Note: at least one parameter must be specified, the rest may then be unspecified i.e. a // variable number double hypotenuse(double side1, ...) { va_list ap; va_start(ap, side1); // Here we're assuming exactly two arguments are passed: the first argument is 'side1' // and the first [and only] variable argument is extracted into 'side2'. Any additional // arguments ar simply ignored. Normally, however, 'va_arg' is placed in a loop, and // each argument extracted in turn double side2 = va_arg(ap, double); va_end(ap); return sqrt(pow(side1, 2.0) + pow(side2, 2.0)); } // ---------------------------- #include <stddef.h> void int_all(const double arr[], int retarr[], size_t arrsize); // ---- int main(void) { const double nums[] = {1.4, 3.5, 6.7}; const size_t ARRSIZE = sizeof(nums) / sizeof(double); int ints[ARRSIZE]; int_all(nums, ints, ARRSIZE); } // ---- void int_all(const double arr[], int retarr[], size_t arrsize) { for (size_t i = 0; i < arrsize; ++i) { // Since 'retarr' is type 'int', implicit data conversion occurs, but data could // be lost; 'arr' is untouched, and is protected since it is 'const' qualified retarr[i] = arr[i]; } } // ---------------------------- #include <stddef.h> #include <math.h> void trunc_em(double arr[], size_t arrsize); // ---- int main(void) { double nums[] = {1.4, 3.5, 6.7}; trunc_em(nums, sizeof(nums) / sizeof(double)); } // ---- void trunc_em(double arr[], size_t arrsize) { for (size_t i = 0; i < arrsize; ++i) { // Safer to use 'floor' instead of casting arr[i] = floor(arr[i]); } } |
// Variables declared within a function body are local to that function, and those declared // outside a function body are global, that is, are visible throughout the executable // unless their visibility has been restricted to the source file in which they are defined // via the 'static' keyword void somefunc(void) { // All these variables are local to this function int variable; int another, an_array[5]; ; // ... } // ---------------------------- #include <stddef.h> #include <stdlib.h> #include <string.h> // File scope variables static char* name = NULL; static int age = 0; static int c = 0; static int condition = 0; void run_check(void); void check_x(int x); // ---- int main(int argc, char** argv) { name = strcpy(malloc(strlen(argv[1]) + 1), argv[1]); age = atoi(argv[2]); check_x(age); free(name); } // ------------ void run_check(void) { // Full access to file scope variables condition = 1; // ... } void check_x(int x) { // Full access to file scope variables const char y[] = "whatever"; run_check(); // 'condition' updated by 'run_check' if (condition) { ; // ... } } |
// Through use of the 'static' keyword it is possible to create 'persistent private variables', // that is, variables that are accessable only by a select set of functions, and that retain // their value in between function calls. In Standard C these may be implemented in two ways: // * File Scope Variables. Here a source file contains global variable(s) [those residing // outside any function body] declared as 'static'. Only the set of function defined within // that file has access those variables, thus they may be considered 'private', and since // they retain their value in between function calls, are also 'persistent' // File: 'mysubs.h' void mysub(void); void reset(void); // ---- // File: 'mysubs.c' static int variable = 1; void mysub(void) { ; // ... do something with 'variable' ... } void reset(void) { variable = 1; } // ---- // File: 'test.c' #include "mysubs.h" int main(void) { // 'variable' is not accessable here // Call 'mysub', which can access 'variable' mysub(); // Call 'reset' which sets 'variable' to 1 reset(); } // ------------ // File: 'counter.h' int increment(void); int decrement(void); // File: 'counter.c' static int counter = 0; int increment(void) { return ++counter; } int decrement(void) { return --counter; } // File: 'test.c' #include <stdio.h> #include "counter.h" int main(void) { int a = increment(); printf("%d\n", a); a = decrement(); printf("%d\n", a); } // * Function Scope Variables. These are local variables declared 'static'; they are visible // only within the function body [hence are 'private'], and persist in between calls of that // function #include <stdio.h> enum CMD_TYPE {INC_CMD, DEC_CMD}; int Counter(enum CMD_TYPE cmd_type); // ---- int main(void) { int a = Counter(INC_CMD); printf("%d\n", a); a = Counter(DEC_CMD); printf("%d\n", a); } // ---- int Counter(enum CMD_TYPE cmd_type) { static int counter = 0; // GNU Extension: nested functions, have direct access to 'counter' int increment(void) { return ++counter; } int decrement(void) { return --counter; } if (cmd_type == INC_CMD) increment(); if (cmd_type == DEC_CMD) decrement(); return counter; } |
// Standard C offers no facility for performing ad-hoc, runtime stack inspection; therefore, // information such as the currently-executing function name, cannot be obtained. However, // there is a GNU extension which allows the embedding of the function name within the // function body, and code may be written to somehow utilise this information. Two additional // GNU extension functions - '__builtin_return_address' and '__builtin_frame_address' - *do* // allow runtime stack inspection. However, this does not include access to information such // as the function name. void whoami(void) { // A Standard C facility, '__func__', performs a similar role printf("I am function: %s\n", __FUNCTION__); } |
// Standard C supports only 'pass-by-value', that is, a copy of each argument is passed when // calling a function. The approach is the same whether the argument is a primitive type such // as an 'int', an aggregate type such as a struct, or an array, or, a specialised type like // a pointer. Despite this, 'pass-by-reference' is possible, though it is performed indirectly // via pointers. Put simply, when an argument needs to be modified, or to avoid the overhead // of copying a potentially 'large' argument, its address [i.e. pointer] is passed in its // place. The pointer is then used to refer to the actual item [hence 'reference']. // In all such cases, bar one, the address of the referred item must be specifically obtained. // The exception is when passing arrays; the system automatically passes a pointer rather than // copying the array: the address of the first array element from which all other element // locations can be computed. void array_diff(int arr1[], int arr2[]); // ---- int main(void) { int arr1[] = {1, 2, 3}, arr2[] = {4, 5, 6}; // Call 'array_diff' with 'arr1' and 'arr2' as arguments. Although each argument is // passed-by-value, because they are arrays, only the address of the first element // is passed. Effectively, 'references' to these arrays are passed, and the overhead // of copying is avoided array_diff(arr1, arr2); } // ---- void array_diff(int arr1[], int arr2[]) { ; // ... } // ---------------------------- #include <stdlib.h> int* add_vecpair(const int* vec1, const int* vec2, int size); // ---- int main(void) { int a[] = {1, 2}, b[] = {5, 8}; int* c = add_vecpair(a, b, 2); free(c); } // ---- int* add_vecpair(const int* vec1, const int* vec2, int size) { int* retvec = malloc(size * sizeof(int)); for(int i = 0; i < size; ++i) { retvec[i] = vec1[i] + vec2[i]; } return retvec; } |
// Standard C is a statically-typed language based on type declarations. This means that: // * Each variable, as well each function's parameters and return value, is declared to have // a type; this is a permanent attribute which cannot be altered [except through 'casting' // which may be seen as selective circumvention of the type system]. Put simply, a variable // declared to be of type 'X' can only be assigned such types; a function declared to return // type 'X' must return such a type // * Type checking is done at compilation time, so it should not be possible [except through // casting] to generate code that is not type conformant e.g. attempts to assign type 'Y' // where a type 'X' is expected, or to return an array instead of a struct from a function, // should fail as compilation errors // // The short of it is that, in Standard C, 'return context' is something that is determined at // compilation time, therefore is not something that can be altered. Runtime-determined // 'return context' is really only something meaningful in dynamically-typed, interpreted // languages. // // That being said, it *is* possible to implement a crude, very limited, form of // runtime-determined 'return context' via the use of 'void*'. The Perl 'mysub' example, below, // will use this approach. Please note the intent here is to show possibilities; the approach is // an example of 'selective type system circumvention', and is not generally a recommended one // unless it is part of a larger library specifcally designed for this purpose #include <stdio.h> enum ret_type { WANT_NULL, WANT_INT, WANT_INT_ARRAY } RET_TYPE; void* mysub(void* arg); // ---- int main(void) { mysub(NULL); RET_TYPE = WANT_INT; int a = mysub(5); printf("%d\n", a); RET_TYPE = WANT_INT_ARRAY; int arr[] = {1, 2, 3}; int* retarr = mysub(arr); printf("%d:%d:%d\n", arr[0], arr[1], arr[2]); } // ---- void* mysub(void* arg) { if (RET_TYPE == WANT_INT) return (int) arg; if (RET_TYPE == WANT_INT_ARRAY) return (int*) arg; return NULL; } |
// Standard C offers no support for named / keyword parameters. It is of course possible to // mimic such functionality in several ways: // * Adopt a convention of passing arguments as hash table entries, or as list nodes, as // an array of entries // * Bury key=value pairs in a string, and pass string as single argument // * Use variable argument functions with structs of key / value pairs [or, as a variation // on the second suggestion, key=value strings] // // In all cases argument unpacking must be performed within the function body, so the // approach can hardly be called transparent. Additionally, a fair amount of code would be // needed to build a usable, flexible and robust facility. Examples of each approach are // shown. // 1. Array of struct named_parm_t [For simplicity, 'value' is assumed to be a 'char*', // but could instead use a 'type tagging' approach [i.e. a field identifying type of // data being stored, and either a void* or a union, for storing the various types] #include <stdio.h> #include <stdlib.h> #include <string.h> struct named_parm_t { char* key; char* value; }; void named_parms_as_array_of_struct(const struct named_parm_t parms[], size_t num_parms); // ---- int main(void) { // a=1, b=2, c=cat named_parms_as_array_of_struct((struct named_parm_t[]){{"a", "1"}, {"b", "2"}, {"c", "cat"}}, 3); // b=12 [a and c have default values] named_parms_as_array_of_struct((struct named_parm_t[]){{"b", "12"}}, 1); } // ---- void named_parms_as_array_of_struct(const struct named_parm_t parms[], size_t num_parms) { // Ensure local variables are initialised to sensible default values int a = 0, b = 0; const char* c = "default"; // Extract named parameter values, and assign to corresponding local variable(s) for (int i = 0; i < num_parms; ++i) { if (strcmp(parms[i].key, "a") == 0) { a = atoi(parms[i].value); continue; } if (strcmp(parms[i].key, "b") == 0) { b = atoi(parms[i].value); continue; } if (strcmp(parms[i].key, "c") == 0) c = parms[i].value; } printf("Value of a is %d, b is %d, and c is %s\n", a, b, c); fflush(stdout); } // ------------ // 2. Delimited string of key=value substrings #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> void named_parms_as_string(const char* parms); // ---- int main(void) { // "a=1,b=2,c=cat" named_parms_as_string("a=1,b=2,c=cat"); // "b=12" [a and c have default values] named_parms_as_string("b=2"); } // ---- void named_parms_as_string(const char* parms) { const char COMMA = ',', EQ = '=', NUL = '\0'; bool parse_entry(char* entry, const char sep, const char** key, const char** value) { char *p = entry, *q; return ((q = strchr(p, EQ)) != NULL) ? ({ *key = p; *q = NUL; *value = ++q; true; }) : false; } // Ensure local variables are initialised to sensible default values int a = 0, b = 0; const char* c = "default"; // Parse string of key=value entries ... char entry[64]; const char *key, *value; const char *p = parms, *q; while (p != NULL) { if ((q = strchr(p, COMMA)) == NULL) q = strchr(p, NUL); memcpy(entry, p, q - p); *(entry + (q - p)) = NUL; // Parse each entry, assign to corresponding variable if (parse_entry(entry, EQ, &key, &value)) { if (strcmp(key, "a") == 0) a = atoi(value); else if (strcmp(key, "b") == 0) b = atoi(value); else if (strcmp(key, "c") == 0) c = value; } p = (*q) ? ++q : NULL; } printf("Value of a is %d, b is %d, and c is %s\n", a, b, c); fflush(stdout); } // ---------------------------- // 3. Variable arguments of key=value strings // // The example from Perl Cookbook is implemented using this approach . Note that the code // here does not perform exactly the same task as the original. Instead, emphasis is placed // on illustrating string parsing and argument handling techniques #include <stdbool.h> #include <stdio.h> #include <stdarg.h> #include <stdlib.h> #include <ctype.h> #include <string.h> void the_func(const char* arg1, ...); // ---- int main(void) { the_func("increment=20s", "start=+5m", "finish=+30m", NULL); the_func("start=+5m", "finish=+30m", NULL); the_func("finish=+30m", NULL); the_func("start=+5m", "increment=15s", NULL); } // ---- void the_func(const char* arg1, ...) { const char COMMA = ',', EQ = '=', NUL = '\0'; bool parse_entry(char* entry, const char sep, const char** key, const char** value) { char *p = entry, *q; return ((q = strchr(p, EQ)) != NULL) ? ({ *key = p; *q = NUL; *value = ++q; true; }) : false; } int inc_secs(char* inc_tok) { char* lp = strchr(inc_tok, NUL) - 1; char inc_mul = tolower(*lp); *lp = NUL; if (inc_mul == 's') return atoi(inc_tok); if (inc_mul == 'm') return atoi(inc_tok) * 60; return 0; } // Ensure local variables are initialised to sensible default values int finish = 0, start = 0; char increment[32] = "10s"; // Storage for parsing ... char entry[64]; const char *key, *value; // Extract values from 1st argument if (parse_entry(strcpy(entry, arg1), EQ, &key, &value)) { if (strcmp(key, "start") == 0) start = inc_secs(value); else if (strcmp(key, "finish") == 0) finish = inc_secs(value); else if (strcmp(key, "increment") == 0) strcpy(increment, value); } // Setup for variable argument handling, and extract values from each of these const char* arg; va_list ap; va_start(ap, arg1); while ((arg = va_arg(ap, const char*)) != NULL) { // Parse each entry, assign to corresponding variable if (parse_entry(strcpy(entry, arg), EQ, &key, &value)) { if (strcmp(key, "start") == 0) start = inc_secs(value); else if (strcmp(key, "finish") == 0) finish = inc_secs(value); else if (strcmp(key, "increment") == 0) strcpy(increment, value); } } va_end(ap); printf("start -> %d : finish -> %d : increment -> %s\n", start, finish, increment); fflush(stdout); } |
// It's generally only interpreted languages, or those supporting some sort of pattern
// matching that implement such a facility. In Standard C a function must return a value in
// conformance with its return type specification [returning nothing - 'void' - may still be
// seen as returning a value]. Where the return value is an aggregate - struct or array - it
// is not possible to perform selective 'masking out' of it's contents; the entire item is
// captured then processed as needs be. Therefore the examples in this section could not be
// implemented
|
// Standard C allows only the return of a single value. The return of multiple values *can*, // however, be simulated by packaging them within an aggregate type: a struct or an array. // The catch is, however, that the return value must be manually 'unpacked', thus using // this approach is a deliberate design decision rather than the use of an ad-hoc facility #include <stdlib.h> #include <stdio.h> typedef struct HASH_ { char* key; char* value; } HASH; typedef struct ARRAY_HASH_ { char* array; HASH* hash; } ARRAY_HASH; ARRAY_HASH some_func(char array[], HASH hash[]); // ---- int main(void) { // GNU Extensions: compound literals ARRAY_HASH refs = some_func((char[]) {'a', 'b', 'c'}, (HASH[]) {{"k1", "v1"}, {"k2", "v2"}}); printf("%c\n", refs.array[1]); printf("%s:%s\n", refs.hash[1].key, refs.hash[1].value); } // ---- ARRAY_HASH some_func(char array[], HASH hash[]) { ; // ... do something with 'array' and 'hash' // GNU Extensions: compound literals return (ARRAY_HASH) {array, hash}; } |
// Unlike in Perl, it is not possible for a function to selectively return / not return a // value; a function is defined to either return a specific type, or to return no value at // all [i.e. to return 'void']. Thus, this approach cannot be used to 'return failure'. // Conventions used in Standard C to indicate function failure include: // * Return a pointer; the return of a NULL-valued pointer may indicate 'failure' such as, // for example, the inability to allocate dynamic memory, or, in the case of the 'fopen' // library function, the failure to open a file // * Return an 'int' value where a 0 or positive value indicates success, and a -1 value // indicates failure. Some library functions also set the 'errno' global variable to a // known error code for further diagnostic information #include <stdlib.h> char* func(void) { int error_detected = 0; char* valid_char_pointer; ; // ... if (error_detected) return NULL; ; // ... return valid_char_pointer; } // ---------------------------- #include <stdlib.h> #include <stdio.h> void die(const char* msg); int sfunc(void); char* afunc(void); char* hfunc(void); // ------------ int main(void) { int s; char *a, *h; if ((s = sfunc()) == -1) die("'sfunc' failed\n"); if ((a = afunc()) == NULL) die("'afunc' failed\n"); if ((h = hfunc()) == NULL) die("'hfunc' failed\n"); } // ------------ void die(const char* msg) { fputs(msg, stderr); exit(EXIT_FAILURE); } // ---- int sfunc(void) { int error_detected = 0; int valid_int_value; ; // ... if (error_detected) return -1; ; // ... return valid_int_value; } char* afunc(void) { int error_detected = 0; char* valid_char_pointer; ; // ... if (error_detected) return NULL; ; // ... return valid_char_pointer; } char* hfunc(void) { int error_detected = 0; char* valid_char_pointer; ; // ... if (error_detected) return NULL; ; // ... return valid_char_pointer; } |
// Whilst in Perl function prototyping is optional, this is not the case in C, where it is // necessary to: // * Declare a function before use; this could either be a function declaration separate from // the function definition, or the function definition itself which serves as its own // declaration // * Specify both parameter positional and type information; parameter names are optional in // declarations, mandatory in definitions // * Specify return type; in the past this was optional, but now this is mandatory #include <stdlib.h> #include <stdio.h> // Function Declaration int* myfunc(int arg1, int arg2); // Also possible: int* myfunc(int, int); // ---- int main(void) { // Call function with all required arguments; this is the only calling method // [except for calling via function pointer which still needs all arguments supplied] int* results = myfunc(3, 5); // Let's look at our return array's contents printf("%d:%d\n", results[0], results[1]); free(results); } // ---- // Function Definition int* myfunc(int arg1, int arg2) { // Allocate some memory, pack arguments into array for return int* results = malloc(2 * sizeof(int)); *(results + 0) = arg1; *(results + 1) = arg2; return results; } // ------------ // Other Perl examples are omitted since there is no variation in C function calling or // parameter handling |
// Though perhaps not a widely used idiom in Standard C the language does offer exception // handling support. Some pertinent reading: // // * http://en.wikipedia.org/wiki/Exception_handling // * http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=512997 // // The example in this section doesn't strctly follow the Perl code, but merely shows how // an exception can be thrown, and handled. The approach used is based on code from: // // * http://ldeniau.home.cern.ch/ldeniau/html/exception/exception.html // // It is worth mentioning that 'exception handling support' consists of the provision, in // the Standard C library, of the 'setjmp' and 'longjmp' functions. Exception handling // code such as that used here is essentially an infrastrucure built around these two // functions with 'setjmp' being used to create a destination for a later invocation of // 'longjmp' to 'goto' [a.k.a. perform a non-local exit], and in the process, ensuring // the 'program state' is wound back to the time the 'setjmp' call was made. Further // details are obtainable by referencing the relevant documentation. #include <stdio.h> #include "exception.h" enum { E_invalid = 0, // This exception can never be thrown E_bad_exit, // 'standard' exceptions E_bad_alloc, E_bad_cast, E_bad_typeid, E_usr_fullmoon, // User-defined exceptions E_last_exception // Last exception id }; int main(void) { printf("main - entry\n"); try { printf("try block - entry\n"); printf("... doing stuff ...\n"); // if (... error condition detected ...) throw(E_usr_fullmoon); // Control never gets here ... printf("try block - end\n"); } catch (E_usr_fullmoon) { printf("Caught a 'fullmoon' exception\n"); } catch_any { printf("Caught an unknown exception, error code: %d\n", exception); } endtry; // Control gets here regardless of whether an exception is thrown or not printf("main - end\n"); } // Include here, or separately compile and link with your executable #include "exception.c" |
// In Standard C it *isn't possible* to access a global variable that has been shadowed by a // local variable of the same name, thus there is no need to save / restore such variables. If // both global and local variable need to be accessable, consider renaming one of them. An // oft used convention is to name global variables using capitals; thus the same name may be // used to indicate the variables are related, but the different case ensures that each remains // visible #include <stdio.h> // Global variable static int age = 18; // ---- void print_age(void) { // Global value, 'age', is accessed printf("Age is %d\n", age); } // ------------ int main(void) { // A local variable named, 'age' will act to 'shadow' the globally // defined version, thus any changes to, 'age', will not affect // the global version int age = 5; // Prints 18, the current value of the global version print_age(); // Local version is altered, *not* global version age = 23; // Prints 18, the current value of the global version print_age(); } // ---------------------------- #include <stdio.h> // Global variable static int age = 18; // ---- void print_age(void) { // Global value, 'age', is accessed printf("Age is %d\n", age); } // ------------ int main(void) { // Here no local version declared: any changes affect global version age = 5; // Prints 5, the new value of the global version print_age(); // Global version again altered age = 23; // Prints 23, the new value of the global version print_age(); } // ---------------------------- #include <stdio.h> // Global variable int AGE = 18; // ---- void print_age(void) { // Global value, 'AGE', is accessed printf("Age is %d\n", AGE); } // ------------ int main(void) { int age = AGE; // Prints 18, the new value of 'AGE' print_age(); // Global variable is altered AGE = 23; // Prints 23, the new value of 'AGE' print_age(); // 'AGE' restored from saved local version AGE = age; // Prints 18, the restored value of 'AGE' print_age(); } |
// Standard C does not allow the redefinition of a function at runtime. A function's name // [as seen in source code] is, at runtime, actually an unalterable value: the address of // a chunk of code. Therefore, a function named 'f' will, for as long as the executable // exists, be associated with a particular chunk of code. void f(void) { ; // ... } // ---- int main(void) { f(); // Call function 'f' void (*fp)(void) = f; // Get address of function 'f'; place in function pointer variable fp(); // Call function 'f' using its address } // However, if the convention of using a function pointer variable to call a function, is // adopted, then it becomes possible to call one of possibly several same-signature [i.e. // same parameter list and return type] functions by simply assigning a different address // to the variable. In this way it is possible to not only execute other available functions, // but also those residing in external libraries [i.e. shared libraries / DLL's] // Perl 'grow / expand' combined example #include <stdio.h> typedef void (*FPTR)(void); void grow(void) { printf("grow\n"); } void expand(void) { printf("expand\n"); } // ---- int main(void) { // Display addresses of each function; each should be a different value printf("grow -> %x | expand -> %x\n", grow, expand); // Call functions directly by name grow(); expand(); // Call functions indirectly using function pointer variable FPTR fp = grow; fp(); fp = expand; fp(); // Local scope { // Current version of 'fp' will shadow outer scope version FPTR fp = grow; // Should now be 'grow' fp(); } // Should still be 'expand' since the 'fp' at this scope was untouched fp(); } // ---------------------------- #include <stdio.h> typedef void (*FPTR)(void); void fred_func(void) { printf("fred\n"); } void barney_func(void) { printf("barney\n"); } // ---- int main(void) { // Note: 'fred' is the pointer variable name. It is *not* possible to redefine function // names FPTR fred = fred_func; fred(); fred = barney_func; fred(); } // ---------------------------- #include <stdio.h> #include <stdlib.h> #include <string.h> const char* red(const char* text) { return strcat(strcat(strcpy(malloc(64), "<FONT COLOR='red'>"), text), "</FONT>"); } // ---- int main(void) { const char* color_tag = red("careful here"); printf("%s\n", color_tag); free(color_tag); } // ---------------------------- #include <stdio.h> #include <stdlib.h> #include <string.h> const char* color_font(const char* color, const char* text) { return strcat(strcat(strcat(strcat(strcpy(malloc(128), "<FONT COLOR='"), color), "'>"), text), "</FONT>"); } const char* red(const char* text) { return color_font("red", text); } const char* blue(const char* text) { return color_font("blue", text); } const char* green(const char* text) { return color_font("green", text); } // ---- int main(void) { const char* color_tag = red("careful here"); printf("%s\n", color_tag); free(color_tag); color_tag = blue("careful here"); printf("%s\n", color_tag); free(color_tag); color_tag = green("careful here"); printf("%s\n", color_tag); free(color_tag); } // ---------------------------- // It isn't possible, in Standard C, to generate code 'on the fly' as is done in the Perl // examples. The code must have been pre-generated, and either statically linked [i.e. // actually part of the executable] or be dynamically loadable [i.e. residing in an external // library which may be located and loaded]. A more appropriate way to solve this problem // is simply to directly call the 'color_font' function with the required arguments, two // approaches of which are shown below in (1) and (2) #include <stdio.h> #include <stdlib.h> #include <string.h> const char* color_font(const char* color, const char* text) { return strcat(strcat(strcat(strcat(strcpy(malloc(128), "<FONT COLOR='"), color), "'>"), text), "</FONT>"); } // ---- // (1) Traverse parallel arrays of arguments int main(void) { const char* colors[] = {"red", "blue", "green", "yellow", "orange", "purple", "violet", NULL}; const char* texts[] = {"x", "y", "z", "a", "b", "c", "d", NULL}; const char* color_tag; for (const char **color = colors, **text = texts; *color != NULL; ++color, ++text) { color_tag = color_font(*color, *text); printf("%s\n", color_tag); free(color_tag); } } // ---- // (2) Package arguments as a struct; traverse array of such structs typedef struct TAG_TEXT_ { const char* color; const char* text; } TAG_TEXT; int main(void) { const TAG_TEXT tags[] = { {"red", "x"}, {"blue", "y"}, {"green", "z"}, {"yellow", "a"}, {"orange", "b"}, {"purple", "c"}, {"violet", "d"} }; const int TAGS = sizeof(tags) / sizeof(TAG_TEXT); const char* color_tag; for (int i = 0; i < TAGS; ++i) { color_tag = color_font(tags[i].color, tags[i].text); printf("%s\n", color_tag); free(color_tag); } } |
// Undefined function calls are detected as errors at code generation time:
//
// * At compilation time a function must be explicitly declared before being called i.e. it
// must have a prototype, else a compilation error occurs
// * At linkage time [i.e. when currently-generated code is combined with library code to
// create an executable module] the code identified with a function must be available,
// [or, with shared libraries, in a known location] else a linkage error occurs
//
// In short, in the Standard C language, no runtime detection of 'missing' functions is
// possible since such code could never have been generated in the first place.
//
// However, if the convention of using a function pointer to call a function, is adopted,
// it does become possible to check whether the function pointer variable is assigned a non-NULL
// address, presumably the address of a valid function. Unfortunately, without the aid of
// specialised, platform-specific library routines, it is not possible to verify the validity
// of this address; an attempted function call either succeeds or fails, and may fail because
// it was a bogus address. Again, the Standard C language offers no runtime detection of
// something like a 'bogus' function address.
//
// The combination of 'call-by-function-pointer', and a suitable set of shared library handling
// functions does make it possible to implement an dynamic code loading facility, even a
// full-blown AUTOLOAD facility. However, it is important to realise that this is an
// infrastructure built on top of the Standard C language, not an integral language feature.
//
// In the *NIX environment the 'dlopen', 'dlsymbol', 'dlerror', and 'dlclose' set of functions
// is commonly used for shared library management, and would form the basis for implementing
// an AUTOLOAD facility. The following is an example of a very minimal dynamic loading system
// illustrating how a function named 'chartreuse' residing in a shared library called 'colors.so'
// would be loaded, called, and unloaded. Note that this is not an example of dynamic code
// generation, as in the Perl example, since the 'chartreuse' function *must already exist*
// for it to even have a chance of executing.
//
// Of course it is possible to write code that creates C source file(s), invokes various
// code generation tools, and builds a shared library which may subsequently be loaded and
// run. Again, though, this is a custom infrastructure, not an integral language facility.
// @@INCOMPLETE@@
|
//------------------------------------------------------------------ // Nested functions are supported by GNU C as an extension // See the documentation of your GCC version int outer( int arg1 ){ int x = arg1 + 35; int inner() { return x * 19; } // nested function can access // all the variables of the containing function // that are visible at the point of its definition return x + inner(); } |
// @@INCOMPLETE@@
// @@INCOMPLETE@@
|